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The hydrodynamic techniques used for shock physics analysis in Sandia 
National Laboratories hydrocodes are based upon fundamental staggered 
mesh artificial viscosity methods originating in the 1950’s and 1960’s. 
While this technology has stood the test of time, advanced numerical 
algorithms for compressible fluid dynamics have been developed in recent 
years. Most of these methods employ solution algorithms that do not 
extend easily to multidimensional, multimaterial and/or nonideal 
equations of state. A description of the fundamental conservation 
equations describing multimaterial hydrodynamics is presented. The 
equation set contains additional constraints and conservation equations 
that require special numerical algorithms to address the implicit 
embedded time and length scales. This formulation provides a physics and 
mathematics based approach for simulating the complex shock wave 
propagation through regions of space occupied by multiple materials. 
Progress toward implementing the additional conservation equations and 
constraints is presented and sample numerical simulations are illustrated.  

Introduction 
The increase in computational power in recent years has made analysis of complex 

multidimensional shock wave propagation problems common place. In addition, new 
experimental methods and theoretical investigations are shedding light on the nature of 
the complex wave phenomena (Baer, 2003). Mathematical descriptions are being 
developed to simulate the complex behavior at multiple length and time scales (Baer and 
Nunziato, 1986). The new mathematical models are pushing the limits of the currently 
available computational technology. Research into numerical methods has resulted in a 
collection of new and innovative techniques (Andrianov, 2003, Baty, 1994, Crawford, 
2005, Miller and Colella, 2001, Miller and Colella 2002, Miller and Puckett, 1996, Saurel 
and Abgrall, 1999, Stone and Norman, 1992, Yee, 1987). Pure Eulerian methods are 
appealing due to the multitude of research that forms the foundation of these procedures 
(Van Leer, 1977, Oran and Boris, 1987). However, the majority of the new methods are 
not applicable to multidimensional, multimaterial shock propagation through complex 
nonideal materials. As the new technology matures it is necessary to investigate the 
foundations of the current methods and extend these techniques to meet near term goals. 

A proven strategy for simulating the large deformation wave propagation with 
multiple complex materials is to use a Lagrangian physics step followed by an Eulerian 
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remap method (Crawford, 2005). This technology has been demonstrated through 
numerous experimental comparisons to capture the salient features associated with shock 
physics problems. There is an open debate regarding the detailed validation of the 
numerical methods and the corresponding verification of the various physics model 
implementations. It is often not the scientific technical details that are in question, but the 
resulting art of implementation and algorithmic approximation that is questioned. Most 
hydrocodes are equipped with a set of control parameters that allow fine tuning of the 
computation for certain classes of problems.  Ultimately a skilled user of the 
computational tool will be able to obtain reasonable results by manipulating these 
controls. However, it is often the case that detailed investigation unravels the underlying 
ad hoc processes that lead to development and implementation of the controls. 

One specific aspect of multimaterial Eulerian shock physics codes that needs to be 
addressed is the treatment of mixed cells. A mixed computational cell is defined as a 
single cell that contains two or more materials. For practical problems it is often the 
assumptions and approximations that are made for this class of computational cell that 
result in numerical issues. The numerical issues are then addressed using further ad hoc 
algorithms or even discard options to eliminate “bad” material. There are a series of 
approximations that can be employed to represent the response of mixed material cells. 
For example, it can be assumed that all materials in a cell have the same pressure and 
temperature, the same pressure and different temperature, or different pressures and 
temperatures. Each level of approximation can be used to obtain useful results for a given 
application. However, it is easy to demonstrate that each option may lead to erroneous 
results if it is not carefully applied. In the authors opinion the approximations that are 
made to the governing conservation equations suffer from an arbitrary nature, but are 
currently necessary to allow efficient solution to this problem class. 

A traditional approach to multimaterial hydrodynamics is presented (Fromm, 1961, 
McGlaun, 1987). Current methods to provide mathematical closure to the governing 
equations are illustrated. A new set of governing equations and a numerical solution 
procedure is presented. This procedure requires efficient stiff solvers to resolve the 
complex phenomena associated with subgrid-scale processes (Mott and Oran, 2001, 
Shampine and Watts, 1980). An example of this subgrid scale process is the temperature 
relaxation between mixed materials in a cell. The heat transfer can be characterized by 
time scales that are significantly different than the Courant limited hydrodynamics time 
step. 

Governing Equations 
The multimaterial representation of the Euler equations written in conservation form 

is: 
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The mixture density ρ is defined as 
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The volume fraction is φ and the true density is γ. The cell pressure is defined as, 
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The total energy is defined as 
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The specific internal energy, ei, is determined by partitioning the total energy into each 
material. This equation set is augmented with an equation of state of the form pressure is 
a function of the true density and specific internal energy.  
 This set of equations with the following unknowns (P, φ, γ, e, V) is closed 
mathematically by making an assumption regarding the evolution of the volume fraction. 
The most common assumptions made are that the pressure and temperature of all of the 
materials in a computational cell have the same value, or the pressure of all materials is 
the same with a different value of the temperature, or the pressure and temperature of all 
materials are different. When the pressure and /or the temperature are fixed between 
materials in a computational cell the volume fraction is forced to adjust to this 
assumption.  That is, the density and the energy of each material are modified such that 
the pressure and/or temperature of all materials are the same. This adjustment does not 
follow any physical laws and represents an ad hoc assumption regarding the physical 
nature of materials in a computational cell. If the pressure and temperature are assumed 
to evolve independently then algebraic rules are used to approximate the energy/volume 
partitioning within multimaterial cells. The algebraic rules may be derived from 
compressibility arguments or other simplistic mixture approximations, but are still ad 
hoc.  
 A common assumption used in continuum mixture theory is that the volume 
fraction has an evolutionary equation in the form of an advection equation with a source 
term (Truesdell, C., 1984). The form of this equation as outlined in Baer and Nunziato 
(1986) is, 
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where the subscript “s” implies a solid phase and “g” implies a gaseous phase, βs 
represents a configurational stress, and µ is a compaction viscosity. This equation states 
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that along a solid-phase streamline the solid volume fraction relaxes viscously toward an 
equilibrium state defined by the configurational stress and the gas-phase pressure. The 
advantage of a multiphase formulation is that each phase has a set of conservation 
equations with a source term representing interphase exchange of mass, momentum, and 
energy. Each phase also has its own velocity field. The critical aspect in the application 
of continuum mixture theory is the determination of the interphase source terms 
consistent with the second law of thermodynamics. There are other mathematical 
formulations of multimaterial hydrodynamics that encompass a volume fraction evolution 
equation (Miller and Puckett, 1996). The various equations differ in the methods used to 
specify the source term. The particular form used in this paper is, 
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The Lagrangian evolution of the volume fraction of material “i” viscously relaxes toward 
the equilibrium state in the cell. The assumption made here is that there is one velocity 
for all materials in a computational cell. This approximation will be assessed in future 
work.  Equations 2, 3, 6, and 8 can be combined to derive an equation for the change in 
the specific internal energy of material “i.”   The “j” index represents another material in 
the cell. 
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The first term on the righthand side of Eq. [9] represents the material work due to 
hydrodynamic motion, the second term is an intermaterial work term and the last term 
represents intermaterial heat transfer. The goal is to develop numerical techniques to 
solve Eqs. (1-3, 8-9). Models for representing the configurational stresses are under 
development and will be the subject of future work. The motivation for development of 
the volume fraction evolution equations is to represent the physics of various 
nonequilibrium processes with more fidelity. Some of the processes under consideration 
are pressure relaxation, heat transfer, chemical transformation, phase transformation, 
porosity evolution, configurational effects, and fracture mechanics. The nature of the 
various processes under consideration here is represented by time-dependent kinetic 
relaxation toward a state of equilibrium. The implication of these processes is that they 
represent a continuum of time scales with associated mathematical stiffness.  

Numerical Method 
 A demonstrated strategy for numerical resolution of this highly coupled equation 
set is to apply time splitting (Oran and Boris, 1987) which is also known as the method of 
fractional steps (Yanenko, 1971). Three operators are defined to split the time integration 
between the hydrodynamic step and the source term step. The hydrodynamic step is itself 
operator split between a Lagrangian physics step and an Eulerian remap step. The 
Lagrangian and remap steps solve the governing equations without source terms using a 
standard numerical method such as presented in McGlaun (1987). The operator for time 
integration of the volume fraction evolution equations with the source terms is 
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represented by numerical integration of a set of coupled ordinary differential equations. It 
is necessary to investigate the order of application of these three operators to determine 
the proper sequence for accurate results. Three sequences of operators that are easily 
investigated for this approach are, 
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where the Lagrangian hydrodynamic operator is LL and the Eulerian remap operator is LR 
and the volume fraction operator is Lφ. Additional sequences of operators may be 
possible to more closely represent the underlying mathematical structure of the governing 
equations.  

Results 
 Normal one-dimensional shock propagation problems have a limited number of 
multimaterial cells that require the volume fraction evolution process. For these problems 
a minor difference in the time evolution of the material pressure near multimaterial 
interfaces is observed. This difference is considered insignificant compared with the 
underlying numerical approximations that are made to create and resolve shock waves. 
Two of these numerical approximations are associated with the use of nonlinear flux 
limiting and the use of artificial viscosity. It is difficult to create simple one-dimensional 
problems with underlying numerical issues associated with the volume fraction 
assumptions. One particular more complex problem that illustrates incorrect numerical 
results is the flyer plate impact of a saturated two-material region as illustrated in Figure 
1. The two-material region is composed of 10% by volume high impedance material 
(copper) and 90% low impedance material (air). The numerical results presented in 
Figure 2 illustrate an unstable wave propagating with an approximate wave speed of 3.75 
mm/µs. The solid (black) line represents the mixture average pressure and the dashed 
(blue) line represents the low impedance material and the remaining lightly shaded (red) 
line represents the high impedance material. This wave speed corresponds to the higher 
impedance material behaving as if it is in a separated flow configuration. The two 
materials in the multimaterial region have different pressures and temperatures 
throughout the impact problem. 
 Incorporating the integration of the volume fraction evolution equation stabilizes 
the wave propagation as illustrated in Figure 3. The wave speed is reduced to 
approximately 0.75 mm/µs. This result is consistent with mixture averaged wave speed 
estimates using continuum mixture theory. The viscous relaxation between the 
components in the two material regions creates a dispersive wave that mimics a mixture 
equilibration process. Investigation of the order of application of the operator splitting 
suggests that the first and third forms presented in Eq. 10 are superior to the middle form. 
The middle form suffers from the fact that only the initial data are available for 
integrating the volume fraction equations. The completion of the operators for the 
hydrodynamic cycle introduces significant changes in the density and energy states of the 
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materials in mixed cells associated with information that is not available at the beginning 
of the time step. 

 
Figure 1. Initial conditions are shown for the flyer plate impact into a saturated two-
material region. 

 

 
Figure 2. Computational results showing unstable wave propagation into the two-
material region. 

Two 
Component 

Mixture 

 
 Flyer Plate 
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Figure 3. Computational results with the volume fraction evolutionary equation 
showing stable wave propagation into the two-material region. 
 

 Multidimensional problems offer greater potential for generating incorrect 
numerical results in multimaterial cells. The reasons for this are associated with an 
increased number of mixed computational cells, more complex motions, and more 
difficult to quantify stability limits of the underlying numerical methods. However, with 
more complex motions additional numerical approximations can promote changes or 
“healing” in energy density states that reduce numerical difficulties. When numerical 
issues do not “heal” they usually proliferate. Various hydrocodes contain algorithms and 
methods to reduce the influence of bad thermodynamic cells on the overall computational 
results. When the number of computational cells with problems grows too large or the 
numerical results cause the time step to drop then the calculations cannot proceed without 
action. Sometimes it is possible to adjust the control parameters like the time step or 
fracture settings. Often the problematic material is discarded, but it is necessary to 
carefully assess the role of this violation of fundamental laws on the computational 
results. 
 The simple two-dimensional problem illustrated in Figure 4 is used to assess the 
role of the volume fraction evolutionary equation. This problem is a two-dimensional 
rectangular geometry with four rods moving toward the center of a cylinder of fluid. The 
rods are a high density solid (platinum) and the fluid is water. Without the volume 
fraction equation this problem creates nearly two thousand thermodynamic states that 
generate error conditions. The computational results shown in Figure 5 represent a 
material plot with the cells that have errors shaded. Notice that for this simulation the 
symmetry of the solution is broken by the error states. The computational results with the 
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volume fraction evolutionary equation are presented in Figure 6. The number of 
thermodynamic states leading to errors is reduced to twelve. All twelve error conditions 
were the result of a single material cell expansion into tensile states beyond the equation 
of state applicability. In addition, the computational results maintain similarity and 
appear to be more consistent. 

 
Figure 4. Initial conditions are shown for the two-dimensional rectangular problem 
with four rods moving toward the center of a cylinder of water. 

 
Figure 5. Computational results without the volume fraction evolutionary equation 
showing computational cells with bad thermodynamic states and broken symmetry. 
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Figure 6. Computational results with the volume fraction evolutionary equation 
showing better symmetry. 

 

Summary and Conclusions 
The addition of an evolutionary equation for the volume fraction was demonstrated to 

reduce the number of equation of state errors and stabilize an extreme example of a one-
dimensional shock propagation problem through a region of space occupied by two 
materials. The additional equations also offer the opportunity to add in approximations to 
the “missing” physics represented by intermaterial pressure relaxation and heat transfer. 
Future efforts will also investigate the possibility of using this paradigm for simulating 
the processes associated with chemical transformation, phase transformation, porosity 
evolution, configurational effects, and fracture mechanics. Work that quantifies the 
statistical processes associated with wave propagation through heterogeneous media 
demonstrates the need for multimaterial velocity fields and configurational effects. These 
processes will drive the future development of the volume fraction evolutionary equation 
addition to traditional shock physics analysis codes. 
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